INFORMS ANNUAL MEETING 2011 Charlotte, North Carolína CPMS Daniel H. Wagner Prize Competition

# Product Line Design and Scheduling at Intel

Evan Rash and Karl Kempf Decision Engineering Group Intel Corporation



# Agenda

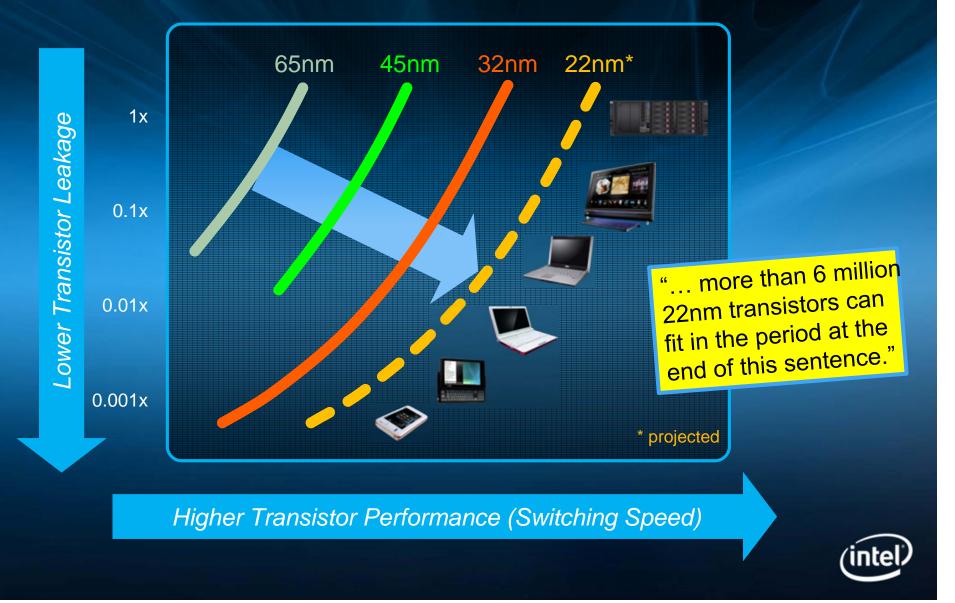
1. Business Background 2. The Strategic Business Problem 3. Mathematical Formulation 4. Our New Solution 5. Our Custom Implementation 6. Growing Business Impact

(intel)

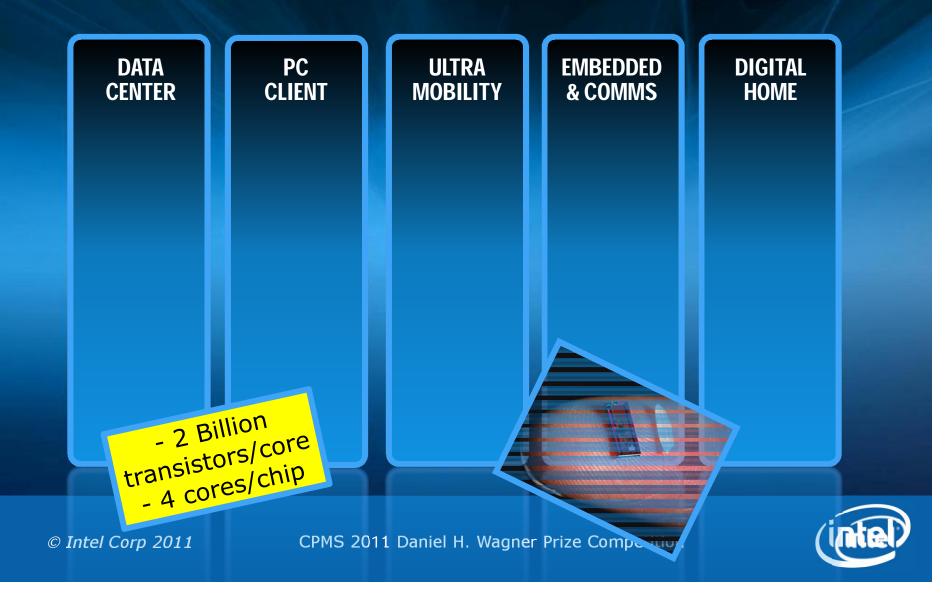
# Two Found New Firm

Bob Noyce (co-inventor of the integrated circuit) Gordon Moore (author of "Moore's Law)

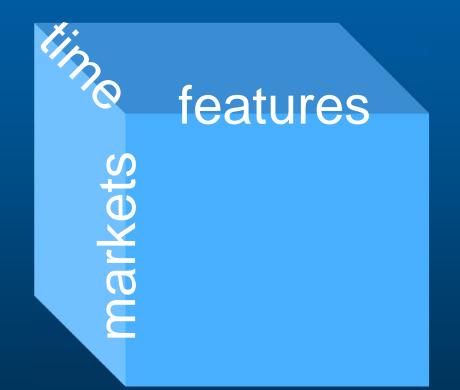
### Founded July 18<sup>th</sup>, 1968


(intel)

43 YEARS of Changing The World


intel

MOUNTAIN VIEW founders of Fairchild Semiconductor Division signed last mor lished a new in electronics com The firm, leased part of Middlefield R pied by Union integrated cir of the firm moved to San Founders Drs. Rob Gordon among eig child Sem than 10


# Leading Edge Process Technology



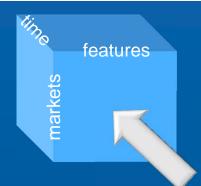
# Leading Edge Product Technology



### Feature, Market, and Time Dynamics



© Intel Corp 2011




| tea<br>markets | tures |         | Different Markets Need<br>a Different Mix of Features |
|----------------|-------|---------|-------------------------------------------------------|
| Market1        | \$13  | 240,000 |                                                       |
| Market2        | \$15  | 300,000 |                                                       |
| Market3        | \$14  | 450,000 |                                                       |
| Market4        | \$12  | 880,000 |                                                       |
| Market5        | \$9   | 900,000 |                                                       |
| Marketing      | ASP   | Vol     |                                                       |
|                |       |         |                                                       |

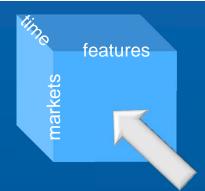
Selling the product in the market brings in revenue

© Intel Corp 2011





# Different Markets Need a Different Mix of Features


#### **Engineering and manufacturing incurs costs**

| Fea   | Feature1 |     | Feature2 |     | Feature3 |               | Feature4   |    | Feature4   |    | ature5 | Fea          | ture6 | Eng & Mfg |
|-------|----------|-----|----------|-----|----------|---------------|------------|----|------------|----|--------|--------------|-------|-----------|
| \$ 3( | 00,000   | \$4 | 00,000   | \$4 | 00,000   | <b>\$ 2</b> . | \$ 250,000 |    | \$ 300,000 |    | 00,000 | Eng Cost     |       |           |
| \$    | 1.50     | \$  | 0.35     | \$  | 1.25     | \$            | 0.50       | \$ | 0.50       | \$ | 0.25   | Mfg Cost / u |       |           |

| Market1   | \$13 | 240,000 |
|-----------|------|---------|
| Market2   | \$15 | 300,000 |
| Market3   | \$14 | 450,000 |
| Market4   | \$12 | 880,000 |
| Market5   | \$9  | 900,000 |
| Marketing | ASP  | Vol     |

© Intel Corp 2011



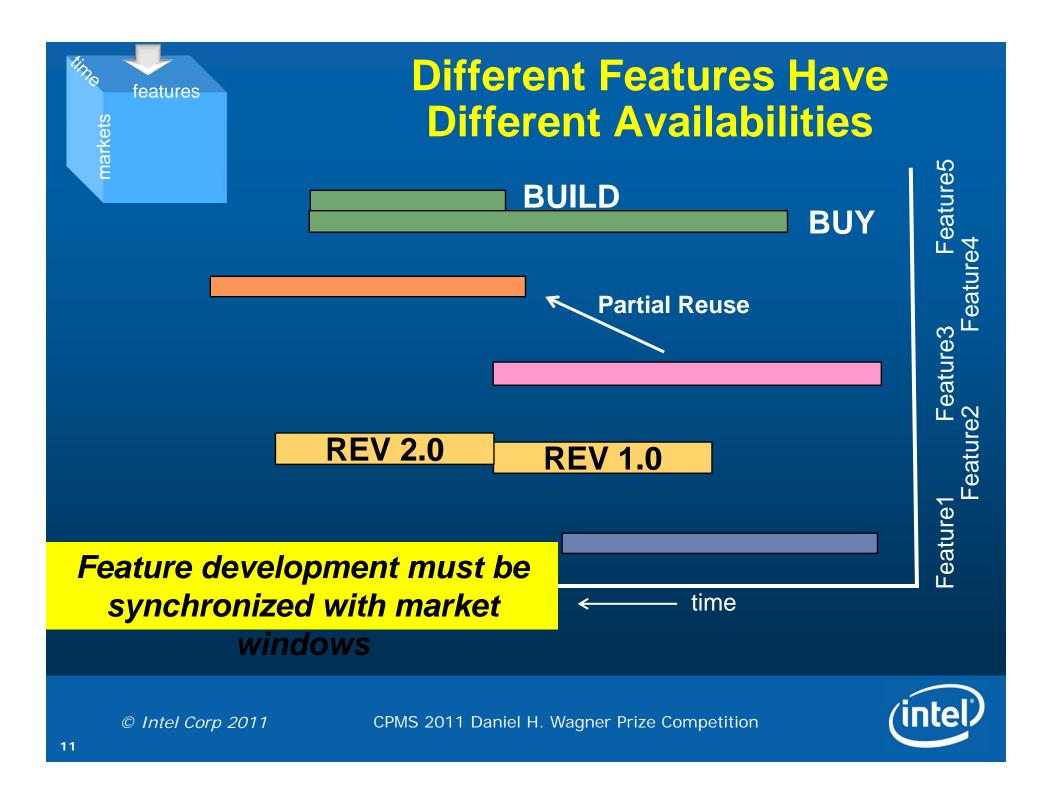


# Different Markets Need a Different Mix of Features

|           |      | Fea     | ture1  | Feature2 |        | Feature3 |        | Feature4 |        | Feature5 |        | Feature6 |        | Eng & | Mfg    |        |
|-----------|------|---------|--------|----------|--------|----------|--------|----------|--------|----------|--------|----------|--------|-------|--------|--------|
|           |      | \$ 3(   | 00,000 | \$ 40    | 00,000 | \$ 40    | 00,000 | \$ 2!    | 50,000 | \$ 3     | 00,000 | \$ 2(    | 00,000 | Eng C | Cost   |        |
|           |      |         | \$     | 1.50     | \$     | 0.35     | \$     | 1.25     | \$     | 0.50     | \$     | 0.50     | \$     | 0.25  | Mfg Co | st / u |
| Market1   | \$13 | 240,000 |        | 1        |        | 0        |        | 0        |        | 1        |        | 0        |        | 1     |        |        |
| Market2   | \$15 | 300,000 |        | 1        |        | 0        |        | 0        |        | 0        |        | 1        |        | 1     |        |        |
| Market3   | \$14 | 450,000 |        | 1        |        | 1        |        | 2        |        | 0        |        | 0        |        | 0     |        |        |
| Market4   | \$12 | 880,000 |        | 2        |        | 0        |        | 1        |        | 0        |        | 0        |        | 0     |        |        |
| Market5   | \$9  | 900,000 |        | 1        |        | 3        |        | 0        |        | 0        |        | 0        |        | 0     |        |        |
| Marketing | ASP  | Vol     |        |          |        |          |        |          |        |          |        |          |        |       |        |        |

**Markets have unique feature requirements** 

© Intel Corp 2011






Markets are not all synchronized in time

© Intel Corp 2011





### **Constraints**

- Feature sets in the products must meet (or exceed) the needs of the target markets
- Features must be engineered in time to be integrated into the products
- Products must be engineered and manufactured to hit the market timings
- The engineering budget is finite (leading to an emphasis on reuse)

# Objective

• Maximize Profit (Max Revenue, Min Eng and Mfg Cost)

© Intel Corp 2011



#### Business questions include (at least):

- Given an engineering budget, what set of products maximize revenue or profit?
- Given a revenue target, what set of products minimize cost, with what engineering budget?
- Given a number of Features to engineer, what is the profit maximizing order of development?
- Given a Feature 'build vs. buy' decision (cost, timing), which generates the most profit?

Difficult to solve with standard techniques due to many different constraints, competing objectives, and interrelated

tradeoffs

© Intel Corp 2011



# Math

#### Define Problem & Formulate as Mathematical Programming

#### Show Complexity & Difficulties involved with Traditional techniques

Solution Methodology & Implementation

© Intel Corp 2011



### The Core Problem

#### **Generate a Product Line**

Strategic

Map products into markets

Schedule product development

#### Generate Product Features *Tactical*

Meet or exceed market requirements

Schedule feature development

### **Optimize for Profitability**

Strategic

Product line must optimize profitability

Must consider engineering budgets

(intel)

### Generating the Product Line

| Inputs                                  |                               |         |
|-----------------------------------------|-------------------------------|---------|
| Set of markets                          | $\left\{ 1,\ldots,M \right\}$ |         |
| Number of products t most one product p | er market $P \leq M$          |         |
| Time horizon                            | $\{1,,T_0,,T\}$               |         |
| Decisions                               |                               |         |
| How many products to                    | ${m eta}_p$                   | Binary  |
| build                                   | $z_p \in \{T_0,, T\}$         | Integer |
| When to introduce<br>products           | $\alpha_{pmt}$                | Binary  |
| Which markets to sell products into?    | рти                           |         |



### **Generating Product Features**

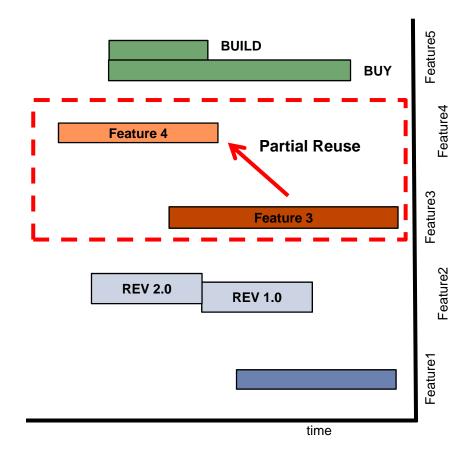
| Inputs                                                  |                       |         |
|---------------------------------------------------------|-----------------------|---------|
| Set of features                                         | $\{1,\ldots,F\}$      |         |
| Market Requirements                                     | $D_{mf}$              |         |
| Decisions                                               |                       |         |
| <b>Product Features</b> Units of Feature f in Product p | $x_{pf}$              | Integer |
| Feature Availability                                    | $y_f \in \{T_0,, T\}$ | Integer |



### Optimize for Profitability

Inputs **Market Volumes and**  $v_{mt}, p_{mt}$ **Prices**  $R_f(t)$ **Feature Engineering Cost (with Reuse)** A **Product Engineering Cost**  $\mathcal{C}_{f}$ Feature Mfg. Cost  $\sum_{p=0}^{P} \sum_{m=0}^{M} \sum_{t=0}^{T} \alpha_{pmt} v_{mt} \left( p_{mt} - \sum_{f=0}^{F} c_f x_{pf} \right)$ **Expressions** Revenue  $A\sum_{i=1}^{P}\beta_{p} + \sum_{i=1}^{F}\sum_{i=1}^{T}R_{f}(t)$ **Engineering Cost**  $\overline{f=0} t=0$ 




## **Reuse Function**

Engineering features presents **reuse** opportunities

> Developing Feature 3 <u>may</u> cause developing Feature 4 to be cheaper/faster

The **Reuse Function** defines these reuse synergies

Typically dynamic and complex



© Intel Corp 2011

### **Reuse Function Example**

A hypothetical Reuse Function where developing one feature in a group causes subsequent feature development to be 50% cheaper

| Feature <i>f</i> | Group $G(f)$ | $R_f(t)$ when $t - 1 = y_f$ |
|------------------|--------------|-----------------------------|
| 1                | 1            | 1                           |
| 2                | 2            | .5 if $y_2 > y_3$ , else 1  |
| 3                | 2            | .5 if $y_3 > y_2$ , else 1  |
| 4                | 3            | .5 if $y_4 > y_5$ , else 1  |
| 5                | 3            | .5 if $y_5 > y_4$ , else 1  |

$$R_f(t) = \begin{cases} 1 \text{ if } y_f = \min_{g \in G(f)} y_f \\ .5 \text{ if } \exists g \in G(f) \mid y_g < y_f \end{cases}$$

# **Full Formulation**

**Objective: Maximize Profit** 

$$\max \sum_{p=0}^{P} \sum_{m=0}^{M} \sum_{t=0}^{T} \alpha_{pmt} V_{mt} \left( P_{mt} - \sum_{f=0}^{F} C_{f} x_{pf} \right) - \sum_{f=0}^{F} \sum_{t=0}^{T} R_{f}(t) - A \sum_{p=0}^{P} \beta_{p}$$

Subject to:

| $\sum_{p=0}^{P} \alpha_{pmt} \leq 1  \forall m, t$                                  | One Product per Market                  |
|-------------------------------------------------------------------------------------|-----------------------------------------|
| $D_{mf} \alpha_{pmt} \leq x_{pf}  \forall p, m, t$                                  | Market Satisfaction Constraint          |
| $z_p \ge \max\{f: \beta_p > 0   y_f\}$<br>$\alpha_{pmt} = 0  \forall p, m, t < z_p$ | Product Availability Constraint         |
| $\alpha_{pmt} = 0  \forall p, m, t < z_p$                                           | Market Coverage Availability Constraint |
| $MT\beta_p \ge \sum_{m=0}^{M} \sum_{t=0}^{T} \alpha_{pmt}$                          | Product Selling Requirement             |
| $\sum_{f=0}^{F} R_f(t) \le S_t$                                                     | Resource Constraint                     |
| $\beta_p \in \{0,1\}$                                                               | Binary Constraint                       |
| $\alpha_{pmt} \in \{0,1\}$                                                          | Binary Constraint                       |
| $x_{pf} \in \{0, \dots, \max D_{mf}\}$                                              | Integral Units of Features Constraint   |
| $y_f \in \{T_0,, T + \Pi\}$                                                         | Scheduling Window Constraint            |
| $z_p \in \{T_0, \dots, T + \Pi\}$                                                   | Scheduling Window Constraint            |

© Intel Corp 2011



## Why Is This a Hard Problem?

#### **Non-linearity**

Reuse Function Objective Function & Constraints

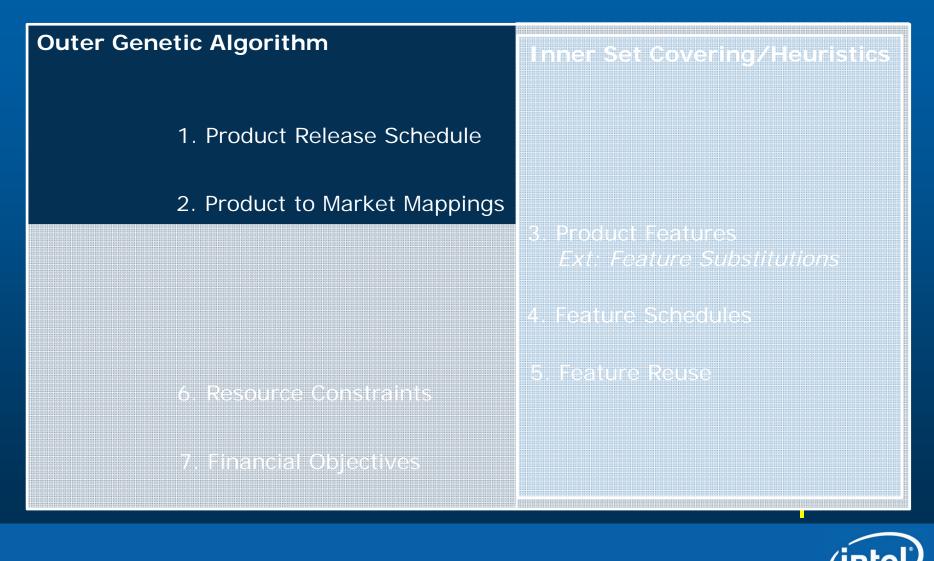
#### **Integral & Binary Decisions**

Scheduling

Mapping

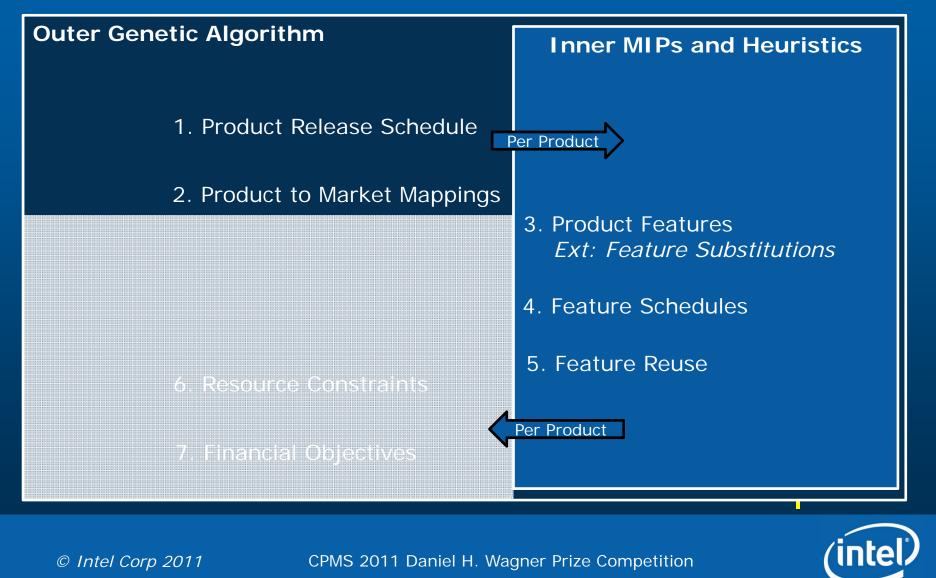
#### **Combinatorics & Problem Size**

#### Difficult to solve by traditional techniques! Linear/Mixed-Integer Programming Constraint Programming

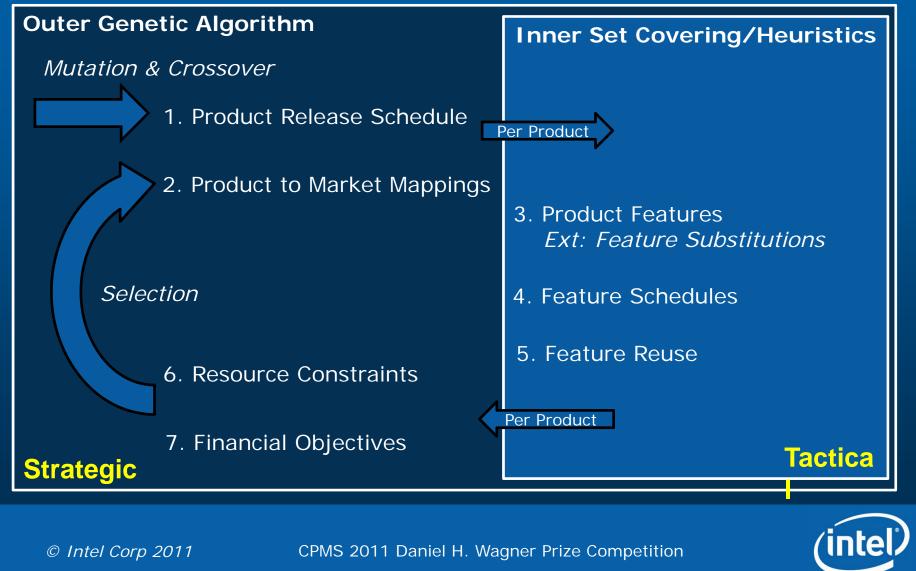

© Intel Corp 2011



### **Our Solution**


- Integrate diverse OR techniques
  - Resource-Constrained Job Scheduling
  - Optimal Set Covering
  - Portfolio Optimization
  - Dynamic Programming
- Decompose Problem into Multiple Stages
  - -Outer "strategic" Genetic Algorithm
  - -Inner "tactical" Heuristics and MIPs
  - Financial Optimization through Genetic Algorithm Fitness

#### **Decomposition – Product Line Design**




24

#### **Decomposition – Generate Product Features**



#### **Decomposition – Financial Optimization**



### Outer "Strategic" Algorithm

#### **1. Outer: Creating Product Schedules**

Generate a random chronologically sorted product schedule, with some products "turned off".

Use crossover to "zip" different schedules together and mutations to randomly permute schedule by pushing products out and pulling products in

#### 2. Outer: Creating Market to Product Mappings

For each market randomly cover or skip the market. If covered, select a random product from the list generated in 1



### Inner "Tactical" Algorithm

#### 3. Inner: Determine Product Features (MIPs)

- Cover market requirements with minimum manufacturing cost
- Cover market requirements with minimum engineering cost

Randomly alternate and allow the evolutionary process to pick the best

#### 4. Inner: Deduce Feature Schedules

Back out the feature engineering schedule based on when the features need to be available for the product's availability (1)

#### 5. Inner: Evaluate Reuse

Evaluate the reuse of the feature schedule from (4)

© Intel Corp 2011



#### **Outer "Strategic" Algorithm**

#### 6. Evaluate Resource Constraint

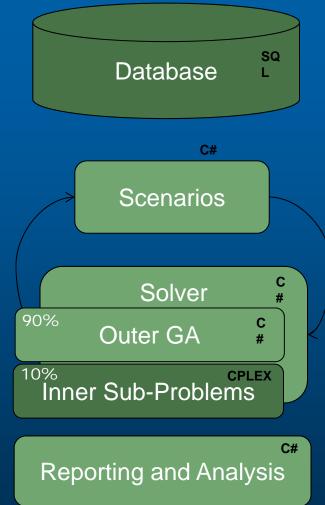
Evaluate the engineering resources for the entire roadmap

Model engineering resource constraints as soft constraints

Use a Lagrangian penalty approach similar to the concept of an "overtime" cost of exceeding the available engineering resource supply

#### 7. Evaluate NPV & Fitness

Evaluate the fitness of the product line by determining its NPV and subtracting out any resource overage penaltice


### "Pinning" Parts of the Solution

- Planning involves many strategic aspects
   Not always possible to solve with a "clean slate"
- Solver must be able to "pin" portions of the solution in place and solve using remaining degrees of freedom
- Examples
  - -Locking products onto the roadmap
  - Locking feature availability schedules
  - Forcing entry into particular markets



### Implementation

- Custom Implementation (C# .NET)
  - Required Custom Mutation/Crossover and Solution Flow
- Inner sub-problem solved via modular heuristics plugged into larger GA
  - Most Heuristics: C#
  - Feature Substitution:
     OPL CPLEX





### **The Business Process**

#### BEFORE

1) Many spreadsheets with local databases

2) Local view by product, sometimes by division

3) Few what-ifs

#### AFTER

1) One tool with global database (HW and SW)

2) Holistic view across divisions and products

3) Many what-ifs

(intel)

### **The Business Process**

#### BEFORE

1) Many spreadsheets with local databases

2) Local view by product, sometimes by division

3) Few what-ifs

4) Difficult decision making between finance, planning, and engineering (design and mfg)

5) No global optimization and little (if any) local optimization

6) Little reuse between divisions and within divisions

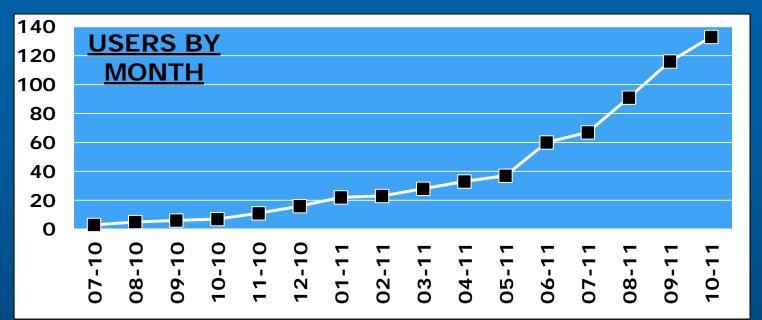
#### AFTER

1) One tool with global database (HW and SW)

2) Holistic view across divisions and products

3) Many what-ifs

4) Collaborative decision making between all of the product functions


5) Global profit optimization

6) Increasing reuse across divs and products (few%/mo)

(intel)

© Intel Corp 2011

#### **User Data and Feedback**



© Intel Corp 2011



#### **User Data and Feedback**



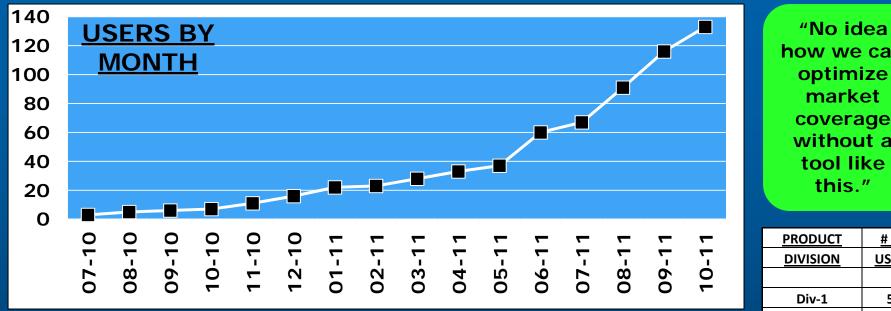
| PRODUCT   | <u># OF</u>  |
|-----------|--------------|
| DIVISION  | <b>USERS</b> |
|           |              |
| Div-1     | 58           |
| Div-2     | 25           |
| Div-3     | 12           |
| Div-4     | 11           |
| Div-5     | 9            |
| Div-6     | 4            |
| Div-7     | 3            |
| Div-8     | 3            |
| Div-9     | 2            |
| Div-Admin | 3            |
| Misc      | 3            |
|           |              |
| TOTAL     | 133          |



CPMS 2011 Daniel H. Wagner Prize Competition

**PRODUCT DESIGN ENGINEER** 

FINANCIAL ANALYST
PRODUCT MARKETING ENGINEER


**OPERATION MANAGER** 

**PRODUCT SOFTWARE ENGINEER** 

TOTAL

© Intel Corp 2011

#### **User Data and Feedback**



"We are finally working in a transparent system instead of spreadsheets on random shared drives."

"Useful as an acumen tool as well as learning about where synergies exist for our products."

| JOB TITLE                  | # USERS | HRS USED |
|----------------------------|---------|----------|
|                            |         |          |
| STRATEGIC PLANNERS         | 16      | 996      |
| PROJECT/PROGRAM MANAGER    | 39      | 476      |
| PRODUCT DESIGN ENGINEER    | 23      | 394      |
| FINANCIAL ANALYST          | 39      | 342      |
| PRODUCT MARKETING ENGINEER | 5       | 63       |
| <b>OPERATION MANAGER</b>   | 3       | 21       |
| PRODUCT SOFTWARE ENGINEER  | 8       | 4        |
|                            |         |          |
| TOTAL                      | 133     | 2296     |

how we can optimize coverage without a tool like

| <u>PRODUCT</u> | <u># OF</u>  |
|----------------|--------------|
| DIVISION       | <u>USERS</u> |
|                |              |
| Div-1          | 58           |
| Div-2          | 25           |
| Div-3          | 12           |
| Div-4          | 11           |
| Div-5          | 9            |
| Div-6          | 4            |
| Div-7          | 3            |
| Div-8          | 3            |
| Div-9          | 2            |
| Div-Admin      | 3            |
| Misc           | 3            |
|                |              |
| TOTAL          | 133          |



© Intel Corp 2011

## Conclusion

- This is a complex problem considering market, feature, and product time dynamics
- Extremely difficult to solve with traditional techniques
- Developed and implemented a custom solution to the problem
- The system currently has users across divisions and job roles
- We believe the system (over time) will become crucial to Intel's continuing success



# WHAT WE MAKE.

IT'S WHAT WE MAKE POSSIBLE.



**Corporate Overview** 

### **Extensions**

- Feature Substitution
  - -Feature A or Feature B can be interchanged
- Time to Market Penalties
  - -Late products suffer in the marketplace
- Minimum vs. Target Market Requirements
  - Feature A is a must-have, Feature B is a value-add
- Build vs. Buy decisions
  - Develop in house or license?
- NPV Optimization

(intel)